14 research outputs found

    The Impact of Simulated Mesoscale Convective Systems on Global Precipitation: A Multiscale Modeling Study

    Get PDF
    The importance of precipitating mesoscale convective systems (MCSs) has been quantified from TRMM precipitation radar and microwave imager retrievals. MCSs generate more than 50% of the rainfall in most tropical regions. MCSs usually have horizontal scales of a few hundred kilometers (km); therefore, a large domain with several hundred km is required for realistic simulations of MCSs in cloud-resolving models (CRMs). Almost all traditional global and climate models do not have adequate parameterizations to represent MCSs. Typical multi-scale modeling frameworks (MMFs) may also lack the resolution (4 km grid spacing) and domain size (128 km) to realistically simulate MCSs. In this study, the impact of MCSs on precipitation is examined by conducting model simulations using the Goddard Cumulus Ensemble (GCE) model and Goddard MMF (GMMF). The results indicate that both models can realistically simulate MCSs with more grid points (i.e., 128 and 256) and higher resolutions (1 or 2 km) compared to those simulations with fewer grid points (i.e., 32 and 64) and low resolution (4 km). The modeling results also show the strengths of the Hadley circulations, mean zonal and regional vertical velocities, surface evaporation, and amount of surface rainfall are weaker or reduced in the GMMF when using more CRM grid points and higher CRM resolution. In addition, the results indicate that large-scale surface evaporation and wind feed back are key processes for determining the surface rainfall amount in the GMMF. A sensitivity test with reduced sea surface temperatures shows both reduced surface rainfall and evaporation

    Evaluating Precipitation Features and Rainfall Characteristics in a Multi-scale Modeling Framework

    Get PDF
    Cloud and precipitation systems over the tropics and subtropics are simulated with a multi-scale modeling framework (MMF) and compared against the TRMM radar precipitation features (RPFs) product. A methodology, in close analogy to the TRMM RPFs, is developed to analyze simulated cloud precipitating structures from the embedded two-dimensional cloud-resolving models (CRMs) within an MMF. Despite the two-dimensionality of the CRMs, the simulated RPFs population distribution, and horizontal and vertical structure are in good agreement with TRMM observations. However, some deficits are also found in the model simulations. The model tends to overestimate mean convective precipitation rates for RPFs with a size less than 100 km, contributing to the excessive precipitation biases in the warm pool and western Pacific, western and northern India Ocean, and eastern Pacific commonly found in most MMFs. For large features with a size greater than 150 km, both convective and stratiform rain rates are underestimated. The distribution of maximum radar echo top heights as a function of RPF size is well simulated except the model tends to underestimate the occurrence frequency of maximum heights greater than 15 km. The maximum echo top heights for convective cells embedded within large RPFs with a size greater than 150 km are also underestimated. The cyclic lateral boundary with a limited model domain generates artificial occurrences for RPFs with a size close to the model domain size, producing a significant contribution to the total rainfall due to their sizes. This cyclic lateral boundary effect can be easily identified and quantified in both probability and cumulative distribution functions of RPFs. The geophysical distribution of the population of the largest RPFs in the control experiment shows they are mainly located in the Subtropics but also partially contribute to the common MMF biases of excessive precipitation in the Tropics. Sensitivity experiments using CRMs with different domain sizes and different grid spacings show larger domains (higher resolution) tend to shift the RPFs distribution to large (small) sizes. The cyclic lateral boundary biases increase as CRM domain size decreases. The impacts of model horizontal and vertical resolution on simulated convective systems are also investigated

    Improvements in the Scalability of the NASA Goddard Multiscale Modeling Framework for Hurricane Climate Studies

    Get PDF
    Improving our understanding of hurricane inter-annual variability and the impact of climate change (e.g., doubling CO2 and/or global warming) on hurricanes brings both scientific and computational challenges to researchers. As hurricane dynamics involves multiscale interactions among synoptic-scale flows, mesoscale vortices, and small-scale cloud motions, an ideal numerical model suitable for hurricane studies should demonstrate its capabilities in simulating these interactions. The newly-developed multiscale modeling framework (MMF, Tao et al., 2007) and the substantial computing power by the NASA Columbia supercomputer show promise in pursuing the related studies, as the MMF inherits the advantages of two NASA state-of-the-art modeling components: the GEOS4/fvGCM and 2D GCEs. This article focuses on the computational issues and proposes a revised methodology to improve the MMF's performance and scalability. It is shown that this prototype implementation enables 12-fold performance improvements with 364 CPUs, thereby making it more feasible to study hurricane climate

    Benefits of a 4th Ice Class in the Simulated Radar Reflectivities of Convective Systems Using a Bulk Microphysics Scheme

    Get PDF
    Numerous cloud microphysical schemes designed for cloud and mesoscale models are currently in use, ranging from simple bulk to multi-moment, multi-class to explicit bin schemes. This study details the benefits of adding a 4th ice class (hail) to an already improved 3-class ice bulk microphysics scheme developed for the Goddard Cumulus Ensemble model based on Rutledge and Hobbs (1983,1984). Besides the addition and modification of several hail processes from Lin et al. (1983), further modifications were made to the 3-ice processes, including allowing greater ice super saturation and mitigating spurious evaporationsublimation in the saturation adjustment scheme, allowing graupelhail to become snow via vapor growth and hail to become graupel via riming, and the inclusion of a rain evaporation correction and vapor diffusivity factor. The improved 3-ice snowgraupel size-mapping schemes were adjusted to be more stable at higher mixing rations and to increase the aggregation effect for snow. A snow density mapping was also added. The new scheme was applied to an intense continental squall line and a weaker, loosely-organized continental case using three different hail intercepts. Peak simulated reflectivities agree well with radar for both the intense and weaker case and were better than earlier 3-ice versions when using a moderate and large intercept for hail, respectively. Simulated reflectivity distributions versus height were also improved versus radar in both cases compared to earlier 3-ice versions. The bin-based rain evaporation correction affected the squall line case more but did not change the overall agreement in reflectivity distributions

    Evaluating Observation Influence on Regional Water Budgets in Reanalyses

    Get PDF
    The assimilation of observations in reanalyses incurs the potential for the physical terms of budgets to be balanced by a term relating the fit of the observations relative to a forecast first guess analysis. This may indicate a limitation in the physical processes of the background model, or perhaps inconsistencies in the observing system and its assimilation. In the MERRA reanalysis, an area of long term moisture flux divergence over land has been identified over the Central United States. Here, we evaluate the water vapor budget in this region, taking advantage of two unique features of the MERRA diagnostic output; 1) a closed water budget that includes the analysis increment and 2) a gridded diagnostic output data set of the assimilated observations and their innovations (e.g. forecast departures). In the Central United States, an anomaly occurs where the analysis adds water to the region, while precipitation decreases and moisture flux divergence increases. This is related more to a change in the observing system than to a deficiency in the model physical processes. MERRAs Gridded Innovations and Observations (GIO) data narrow the observations that influence this feature to the ATOVS and Aqua satellites during the 06Z and 18Z analysis cycles. Observing system experiments further narrow the instruments that affect the anomalous feature to AMSUA (mainly window channels) and AIRS. This effort also shows the complexities of the observing system, and the reactions of the regional water budgets in reanalyses to the assimilated observations

    Numerical simulations of cyclogenesis over the western United States

    No full text
    In this study the Purdue Mesoscale Model (PMM) was used to study a winter cyclone that developed in the Great Basin region on 1-3 March 1985. The primary goal of this study is to improve the understanding of the process of explosive development and the evolution of the cyclone over complex terrain. To achieve this goal, a real case simulation was combined with sensitivity tests and diagnostic analyses of the model outputs. The control simulation was able to replicate the rapid development and the movement of the cyclone. The central pressures of the simulated low centers were within 3 mb of the observed values and the predicted cyclone paths were within 135 km of the ECMWF analyses. The predicted precipitation amounts and patterns were in general agreement with observed fields. To identify the importance of various physics processes in the cyclogenesis, six sensitivity experiments were conducted. It was found that the development of the cyclone was mainly controlled by adiabatic dynamics in this case study. The effect of topography was also important to the location and movement of the cyclone. Without the mountains, the surface low center over Nevada disappeared and the low center over Idaho was located farther north. Over the entire domain, the effects of surface friction and latent heating were significant. However, these physical processes only had a minor effect on the cyclone development in the Great Basin region. Diagnostic analyses were performed to help pinpoint the dynamical essence of cyclogenesis. It was found that upper-level forcing was essential to the rapid development of the surface cyclones. Based on potential vorticity analysis, we have been able to describe the development in terms of the advection of a positive PV anomaly. It was found that the rapid cyclogenesis occurred when the upper-level high PV spread over the low-level baroclinic zone. The time evolution of the tropopause height suggested that the positive PV anomaly coincided with a tropopause folding. It was also found that the surface cyclone over Nevada was situated inside the major ascending motion induced by the upper-level PV anomaly during the rapid deepening period. From analyses of the divergence fields and ageostrophic flows, it was shown that the observed patterns were very complicated and could not be fully described in terms of idealized two-dimensional jet streak dynamics. On the other hand, vertical cross sections of ageostrophic circulations indicated that the development of the cyclone over Nevada coincided with the ascending branch of an indirect circulation in the left quadrant exit region of the anticyclonic jet streaks upstream of the developing trough. The heavy snowfall over South Dakota also can be understood as the interaction of an upper-leveljet-frontal system and a strong surface warm front in the vicinity of the entrance region of an upper-level jet streak

    One-Dimensional Sea Ice-Ocean Model Applied to SHEBA Experiment in 1997-1998 Winter

    No full text

    One-Dimensional Sea Ice-Ocean Model Applied to SHEBA Experiment in 1997-1998 Winter

    No full text
    A one-dimensional sea ice-ocean model with its application in the Arctic Ocean is presented. The model includes a mixed-layer ocean model, a multi-layer snow/ice model, and the interfaces among atmosphere, snow/sea ice, and sea water. The observational data from the measurements at the ice station of the Surface Heat Budget of the Arctic Ocean (SHEBA) field experiment between November 1997 and January 1998 were used to drive and validate the model. The energy budget of the stand-alone simulations shows that the longwave radiative cooling is mainly balanced by the heat released of freezing at the bottom of the sea-ice. The results also show that the effect of ventilation and blowing snow are required to reproduce the detailed observed surface temperature, thickness of the sea ice, sensible heat flux and upward longwave radiation

    Simulation of Water Sources and Precipitation Recycling for the MacKenzie, Mississippi and Amazon River Basins

    No full text
    An atmospheric general circulation model simulation for 1948-1997 of the water budgets for the MacKenzie, Mississippi and Amazon River basins is presented. In addition to the water budget, we include passive tracers to identify the geographic sources of water for the basins, and the analysis focuses on the mechanisms contributing to precipitation recycling in each basin. While each basin s precipitation recycling has a strong dependency on evaporation during the mean annual cycle, the interannual variability of the recycling shows important relationships with the atmospheric circulation. The MacKenzie River basin has only a weak interannual dependency on evaporation, where the variations in zonal moisture transport from the Pacific Ocean can affect the basin water cycle. On the other hand, the Mississippi River basin has strong interannual dependencies on evaporation. While the precipitation recycling weakens with increased low level jet intensity, the evaporation variations exert stronger influence in providing water vapor for convective precipitation at the convective cloud base. High precipitation recycling is also found to be partly connected to warm SSTs in the tropical Pacific Ocean. The Amazon River basin evaporation exhibits small interannual variations, so that the interannual variations of precipitation recycling are related to atmospheric moisture transport from the tropical south Atlantic Ocean. Increasing SSTs over the 50-year period are causing increased easterly transport across the basin. As moisture transport increases, the Amazon precipitation recycling decreases (without real time varying vegetation changes). In addition, precipitation recycling from a bulk diagnostic method is compared to the passive tracer method used in the analysis. While the mean values are different, the interannual variations are comparable between each method. The methods also exhibit similar relationships to the terms of the basin scale water budgets
    corecore